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ABSTRACT

The Pauli and the Oberhettinger asymptotic expansions for the
diffracted field produced by the scattering of a plane wave by a
wedge are compared analytically and numerically, and their range of
application is extended.

The Pauli-Clemmow method of steepest descents is used to evaluate
Sommerfeld's complex integral expression for the total field produced
by the scattering of a plane electromagnetic wave by a perfectly
conducting wedge. This method is applied in a manner somewhat different
from that cmployed by Pauli and yields an asymptotic cxpansion which
is simpler in form and of wider applicability than Pauli's original
expression., This generalized form of Pauli's expansion can, for
example, be applied to the computation of the fields diffracted by
wedges which have exterior angles less than 180 degrees. It is shown
that simply by rearranging the terms in this generalized Pauli ex-
pansion a generalized form of Oberhettinger's asymptotic expansion
can be produced. This generalized expansion is applicable to problems
involving wedges having exterior angles less than 180 degrees, and it is
comparable with Oberhettinger's original series when the wedge angle is
greater than this value,

Several examples of the scattering of a plane wave by a wedge are
studied numerically, The superiority of the generalized Pauli asymptotic
expression over previously derived asymptotic expressions is demonstrated
in these numerical examples.

These asymptotic expressions are used to obtain scalar diffraction

coefficients which are valid in the transition regions at the shadow
and reflection boundaries.
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CHAPTER 1

INTRODUCTION

This chapter containe a statement of the problem
considered in the report, the motivation for considering
the prodlem, a summary of the contents, and a brief gurvey

of the literature on wedge diffraction.

The Probler

Iet a plane time-harmonic clectromagnetic wave of
ardbitrary polar%zation be incident on a perfectly conducting,
infinite, two-dimensicnal wedgej the situation is depicted
in Figure 1, The ficld is propagating in free space, and
$ts propagation vecter i is perpendicular to the cdge of
the wedges, VWhen this wave etrikes the wedge, it is scattered.
The sum cf the incident ficld and gcattered fielcd 3s called
the total field. This total field can be broken down into
- two linecarly polarized ficlds, one having itc electric
vector parallel éo the edge of the wedge and the other
having 3.ts magnetic vector parallel to this cdge. These
two polarization components can be studied individually.

An exaci mathenatical expreusion, called GP in this
wok, hac been developed to dezcribe these polarizatien

|
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Figure 1. A plane clectromagnctic wave incident
on a'pcrfcctly conducting wedge of exterior wedge angle®.,
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components, and this can be written in a varicty of forms.

Poosibly the mout familiar of thcsoe is the infinite eigen-~
function acrics of products of Bcss;l and trigcnometric
functiong. 1If 9? is to be evaluuted at points which are

& large number of wavelengths from the edge of the wcégc,

then it is convenient and, in fact, necessary to wrate it

in the fora of an asymptotic exprecsion in the variable kr,
where k 48 the propagation constant and r is the perpencdicular
distunce from the cdge to the field noint.

Thore are two such asyrplotic exprccaions.which are
commonly used to compute Gp in such caces. One of these
was . derived by Phuli;l the other, by Oborhcttinger.z Pauli'a
expression is written as a Pr;sncl integral plus an infinite
sericu of conflncni hypergeonetric functions. Obcerhetiinger's
cxpression contains a Frecnel integral and an infinite
scrics of teré; of the fo;m

:)__(.
('f’)z. ' .
where N ig an integer. One purposc of this work is to

dnvestigate the relation between these two geries. Are

they, for inctance, actually the same series written in
different formo? Another purposc is to determine which of

theuve serics iu cuperior fur computational purposes.



b
Euch of these series suffers from certain inadequacies.

Somc of thesc are listed below,

a) Both scri;s arc resérictcd to néplications vhere the
exterior wedge anglecel is greater than 180 dcﬁ;ces.

®) The Pauli ceries cannot be applicd to all situations
even vhen o is greater than 180 degreces., For exaample,
4f o is close to but greater than 180 degrees and the
propagation vector E.in ncarly parallel to one of the
fagcs of the wedge, the Pauli serics will not deceribe.
Gx;accuratcly in the vicinitly of the other face.

¢) The Pauli scries is writton in terms of the relatively
unfamiliar confluent hypergeccnctric functions,

In this work, these scries arc re-cxarined, and thesc

inadequacing are in part removed.

The Motivation

The geometrical theory of diffraction3 provides a.
cimgl? rnethod for calculating the ficlds produced ty the
scattering of high frequency electromagnetic waves Sy
perfectly conducting bodies of quite general shapec. This
theory is particularly uscful for describing the scattcriﬁﬁ
by cdges of Yoldiwvs, such as the curved edge of a circular
dick,h the curv.d edge of a parabolic nntcnna,5 the straight

edge of a horn nntcnnn.§ or the siraight ecdge of a polygonal

?

cylinder,
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- " In the geometrical theory of diffraction, the descrip-

tion of diffraction from cdges is treated in the following‘
way. As in the theory of gcowmctrical optics, the field
incident on the cdge is assuncd to propagate along ray
paths. Upon striking an edge, the incident ray is
scaticered, giving rise to a family of diffracted rays.

The direction of propagation of these diffracted rays is
determined by the generalized Fcrma;'s principal. The
distribution of the incident ercrgy among these diffractcd
rays ie described by a diffraction coefficient. The
gdiffraction of the incident rays is a local phenonenon,

60 the diffraction cocfficicgt depernds on the geonetry

of the edge in the region svrrgunding the point of diffrac-
tion and on the local polarization state of the incident
fiecld,

The cxact form of the diffraction coefficiént nust bve
derived from the rigorous solution of a "canonical'" problem.
The canonical pfoblem. which yiclds thc.&iffraction
coefficient for an ecdge, is the diffraction of a linearly
pol&rized plane wave by a two-dimchsional, infinite wedge.
The diffraction coefficient is found from Sommerfcld's
asymptotic, high frequency gcoluticn to this probleh.

This c¢dge diffraction coefficiert adequately describes

the @iffracted fiecld at points well removed from the point
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of diffraction and transition regions, that is, sholow and
reflcction boundaries. In these transition regions, however,
the diffraction coefficicent fails to describe the field and,
the geometrical theory must be supplemented by a more sophis-
ticated cquation. The equations normally employed are
the asymptotic expansions of the wedge diffractéd field
given by Pauli and by Oberhettinger.

Vhen applying these formulas to practical geometrical
thecory of diffraction computations a numbexr of questions
naturally arisc.. Which formula is superior from the
coriputational point of view, Qr which asynptotic expansion
will provide the best descr;ption of the field in the
transition'rcgion with the minimua amouni of computaticnzl
offort? \Vihat is the smallest valuc of kr for which these
formlas are useful? Since the cxpressicns are asynptotic
series, what is the effect of higher order terms? This
i study was motivated by practical computatiounul questions

of thie nature as well aes by the desire to cxtend the

n useful range of Pauli and Oberhettinger asymptotic

' expreseions end to determine the rclation between then,

Summarx

The cltarting point of this work is the cigenfunction

seriecs form of the Green's function for a line source

radiating in the vicinity of an infinite, two-dimencional

TN LT LTI SO Pt b N s gt e SHI Pt 8 g oM <
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wedge. After a brief discussion of this expression, it is
assumed that the line source recedes to infinity, and this
solution is peéuccd to that for the G;attering of a planc
wave. The resulting infinite serics is then summed in

closcd form And written as a complex contour integral.

This integral is identical with the ansatz first deduced

by Sommcrfeld.8 This conmplex, integral expression for Gp

is then rewriticn in a slightly different but more convenient
forn, and disiridbution of the saddle points and poles.of

the integrand of the resulting expression is studied.

The integral expression is then evaluated by the ordinary
nethod of stecpest descents, and then bty a modilicaticn of
this nrethod. This modified method of steepest descents vas
first used by Pauli in the derivation of his asymptofic
series for G, The methcd is uscd here in a soazewhat differ-~

P

ent manner to yicld an expression for Gf which is btoth
simpler and more gereral than Pavli's expression. The -
exprescsion derived in this work consists of an infinite
serics of functions. Each function is the sum of a Fresnel

integral and a finite number of terms of the form

-}

owven

2
()’-I‘) .
It is next deronstrated that for certain cases the

expression for Gl,dovc]opcd in thie work can be reduccd

—————— e




to the one derived by Pauli. The cases for which this reduction is
not possible are just those to which the Pauli expression does not
apply.

The relation between the expression for GP developed in this
work and that developed by Oberhettinger is investigated., It is
shown that for cases whereogl is greater than 180 degrees they are
the same series written in a different form. In Chapter IV several
examples of scattering of a plane wave by a wedge are studied numeri-
cally, and some conclusions regarding the relative merit of the vari-
ous solutions presented in Chapter III are drawn from the results,

In Chapter V the asymptotic solutions are used to obtain expressions

for the diffraction coefficients,

Literature Survey

The problem of diffraction of electromagnetic waves by a wedge
has been the subject of numerous theoretical and experimental studies.
An extensivé list of many of the papers is given in the bibliography.
Sommerfeld9 was the first to develop a rigorous solution for the dif-
fraction of a plane wave by a perfectly conducting half-plane. He used
an extension of image theory to deduce an integral solution for this

problem and showed that his solution reduced to the Fresnel integral. A

gsimilar solution was derived by Carslaw,10 who used image theory, and by
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Poincnrézll vho reduced the diffraction problem to one of
solving an integral couation, Hacdonald.la’ 15 using the

clugsical methods of ceparation of variables, was the first
to obtain the complete solution to the problen of .diffraction
of plane, cylindrical, and spherical waves by a perfectly
conducting wedge of ardbitrary angle. Maccdonald's solution

38 in the form cof an infinite ceries but has been written

$n integral form by mcans of an intcgfal trarsfornaticn
relating the ordinary and modified Reesel functions.
Sommcrfcld8 cmployed his e¢xtension of the method of'images

to derive an.integral expregssion for the diffrection of

a planc wave by a perfectly conducting wedge of arbitrar;

15

angle. Carslnwlh and Brouwich™ also constructed solutione
to this problem using thc.mcthod of images,. Obcrhettinaer16
used an integral transform method to dcri;e another integral
expression for the diffraction of planc, cylirdrical, and
spherical vwaves by a perfcctly.conducting vedge of arbit}ary
angle., Xontorovich and Lebedcv17 and Karpla have dcveloped
the solution for a half-planc ucing transform methods.

The Wicncr-Hopf nethod has been applied to this prodlem
by Narringtou.lg Copcon,ao and Magnus.zl Recentdy Nomura.‘?2
Scnior.23 and Heinczu have studicd thc diffractior. of a di-
pole ficld by a perfectdy conducting half-planc. The
colution for the diffraction of pulses by wedges has gccn

s
exonined by Obcrhcttingcr.z) Prcidlandcr.a6 and othcra.27' “

=
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The prodblems of diffraction by ipperfectly conducting
vedges, diclectric wedgen, and wedges having mixed boundary
conditions have been treated in recent ycars.“z' £ Senior
hag developed an exact solution for the imperfectly conducting
half-plane“a and right-angled wcdcc.h} Approximate solutions
to this problem have dbeen found by Jones ‘and Pidduck,h“
Fbloen,“s Williaas,MG’ b7 and lk\:lyuzincc.!"8 Diffraction
from unidircctional conducting half-plancs has been studicd
by Radlow,so Hurd,51 and Seshndri,sz' 55 and the prodblens
of diffraction by wedges immersed $n conducting and anisotropic
media have been investigated by Dmitricv.Bh' 57 Jull.55
\'Iillians.s6 and Seshadri.?’ The diffraction of surface
waves by right-anzled wvedges was treated by Karp and

64-67 68-70

anal.58'63 Chu and Xouyounjian, and others,

Diffraction of waves by wedges with various kinds of exotic

. . > » 71"?5
boundary impecdances have been examined by Karp,

76-79 80-90

Felsen, and others,

The results of some of the theoretical investigetions

of wedge diffraction have bean applied to the calculation
9, 92

of horn and curface wave antenna patterns,

93

to studices

of ecattering fron terrain features,”” and objects possessing

h, 95 )
7y 9% 95 and to the problenms of diffraction from thick

97-98

edges,

ccrccno.g6 irrcpgular cdges,
99, 100

and various double wedge

configurationc, A nundber of experimental ctudices

have been rade to verify the predictions of wedge diffraction

thcory.loa"m6
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Asymptotic forms of the solution for the diffraction

of a plane wave by a perfectly conducting wedge have been

107

derived and studied by Sommerfcld,9 Pauli,l Clemmovs,

108

Yan der Waerden, and Oberhettinger.2 Sommerfela9

attenpted to derive an asymptotic expression for his integral

colution of this problems However, his result failcd to
predict the correct value for the ficld ncar the shadcw and
reflection boundaries. This failure was due Lo the fact
that he ueged the conventional method of steepest descenté

109 This method is no! applicable to

developed by Debye,
¢oses in which a pole lies ncar the saddle point over which
the integration is taken, a situation which occurs when the
diffracted field is evaluated ncar a shadow or reflecticn
boundary. Pauli1 modified the nethod of stcepect descénts
and derived a suitable asynptotic solution fcr the problem,
Ottllo examined Pauli's method and simplified it, Clemmowlo?
studicd Pauli's method in detail and found it yields a partial
wcymptolic expansion, .Clemmow suggestod that.such an

oxpansion can alviays be rearranged in the form of an asymptotic

expunsion in inverse pewers of an appropriate variable,

Obcrhettinl;cr2 appliecd Viatson's lemma to his integral ‘ |

expreevion for the diffraction of a plane wave by a wedge

108

to produce a new asymptotic expunsion. Van der Waerden
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and Oberhettinger showed that Oberhettinger's expansion
could be derived by an application of Van der Vaerden's

podificd method of steepest descents,




‘CHAPTER II

SERIES AND INTEGRAL FORMS OF THE SOLUTIOH

In this chapter the infinite~serice fornm of fhe
Green's function for the diffraction problen of a line
gource radiating iﬁ the prcscnce.of a two-~-dincnsional
wcdéé of arvitrary angle is introduced, and the infinite-
gerics form of the solution for the diffraction oé a plane
wave by a wedge is derived from this, This series i; then

transfornmed to a complex integral reprecentation,

Serics Form of Lthe Solution

Consider a two-dimensional wedge and a line source

to be situated in space as shown an Figure 2. The faces

of the wedge are formed by two semi-infinite planes
intercecting on the z.axis of the cylindrical coordinate
.oystcm. Crie plane is located at @ = 03 the other, at @ =,
The infinitely-long line source is perallel to the edge of
the wedge, and ils position is described by the coordinatee
(r'.;ﬁ'). The typical field point is denotced by.(r,$5){
The line source ic assumed to have unit strength and time

(T\} o
dependence of the form ej t.

13
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The Creen's function for thic radiating system can be

writtcn16

e

{
(2)
G = i‘ Aemda(kr')ll! (kr) [cos{ E(«,& i ¢')}
n=s0 n n

+ cos{s (s5+ & }] (1) | |

i€ r> r'. For the case r'{ r, r and r' are intcrclanged.
In this cexprescicn G- i8 the Beumann nucber vhich is ecqual

to onc if n is ucro; othervisc it is equal to two. Jm(kr5

and lléa(l:r) reprecsent bessel and Hunkel functions respectively.
2 .

The vard.ble n deserides the wedge angle and is rcluted to o

by the following cquation:

«=nT,. T (2)
k 48 the propagation constant. The plus eign is used between
the tvo cosine ternss £f the dboundary condition 5 of the
houiogenccus Neunann type (g-;: z 0 on toth fucce of the
wedge). Yor the homogeneous Dirichlet boundory condition

(G = 0 on both faces of the wedge), the ninus sié;n 56 uced.

Thie convergent cerien ic on excet colution to the
time-harnonic, inhonogencovs wave equatiocn for the prodlew
of a radiating linc source and wedge ewdbedded in a lincar,

icotropic, homagencows, locnless mediva, It satiefics the
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hosogencous Neunann or Dirichlet boundary conditioncg,
the radiation conditionllh anq the Mcixner cdge
condition}ls'lzo This eerices converges for all valnes
of ry r'y ¢, and ¢*', and is valid for all valuves of n.
The expression describcﬁ the total radiation field
ercated by the direct radiation from the line source ané
that scattered from the wedge. If the line source is an
elcctric current of strength I, then G reprecents the
elcetric field vector, that is, E, =-jiy2IG; and the

boundary condition G = O applics. If the linc scurce is

a nagnetic current of strength M, then G represents the

pagnetic ficld vector, that is, ﬁz = «JWelGy and the , ¢
bouncary condition :—g— = O applicso.

In many cases it is nccessary to determine the total
radiation ficld when the ficld point is far removed fron
the vertex of the wedge. In such caces Equation 1 can be
sinplified by replacing the Hankel functions bj the first

term 6f their asynptotic expansion, that is, by the relation

1

w“¥ nmW
(2) 212 ~3(kr -3 -503)
”ﬂ (rx )~ [1“-;] c (3)

n
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Thic cubstitution reduces G to the form

1 ar oo
2 ~3(kr - 76) . 3
._....,.2 l o !
(] {'lﬂ:r] ¢ 4 -2- OC'"J['l(kl Ye M
ns= n
[;:os{r—'ll( ¢} 5-5")} + cos{ ;?-( g+ 5! )}] (&) |

%his substitution is stfictly valid only for those terms of

T
2

the serics for vhich kr is large compared to the order of
the Hankel function, Thci‘cforc. when making this substitu-
tion an additional assumption is rcquir_cd. This is that
r' is emall enough comparcd to kr so that the terns of |
the series which do not satisfy the requircment kr -'-:-

are negligibdbly smail and, for practical purposes, contribute

nothing to C.

If the line source rather than the field point is far

removed from the vertex of the wedge, G can be written

> 12 ~j(kr! -11}?)
[TET';‘.'] e GP ’ (5)
¥here
;27
ne

[co { sz-p')} ] cos{-—(s)-f '5}:\(6)

Gy = & ZerlJ.(lr)c

Gp 6 tre series form of the Grecn'c functiion dcscrib'ing

33

the total ficld created by the cecatiering of a plunc wave

by a vedpe, YU 4o on exact soluticn to this problenm in
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the- sense described on pages 15 and 16, Yhe remainder of

P.

BEquation 6 converges rapidly for omall values of kr,.

this work concerns the evaluation of G

If kr is lces than 1,0, less than 15 terns of the series

are required to compute a value of G_ which is accurate

P
to 5 significant figures, Vhen kr is large, the scries
ctill converges but very slowly. If kr = iO, Lo terms
are rcquired to achicve S significant figurc accuracy in
. G}” In view of this slow cosvcrgence for large valucs of
kr» the expression for GP nuegt be cast in anéther form if'
it is to be useful for computational purposcs. An asynp-
totic expansion of Gp in inverse povers of kr is.subh a
uwceful form. In order to derive an asymptolic expression
for GP by the standarad méthod Qf cteepest descenis it nust

firgt be transformed into an integral or integrals

of the type

g F(z)ekT(2)y, - (7)

c

In the next scction a method for making this transformation

ia deccriﬁcd.

Interral Form cf thie Soluticn

e NG A CET AT Puy Swatie

Sonrerfeld dcduced, by an extension of the method of

fnages, a complex integro) form for G, and derived the

I)

cigenfunciion serics given by Equation 6 fyom this integral,

h.un e e B e T s et i et o - e e Sl e T Lo Lo et Sagndnaad T
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In this &ection the inverse derivation is prescented., This
proccdure o more syntematic since one is not required to

gtart with a solution arrived at by intuition. 'I:‘irst one i

vritec the Bessel functions of Equation 6 in integral form.

Next the order of integration and summation is interchanged,

and, finally, the resulting sums are written in closcd fornm.
GP will first Ve written as the sum of two terms as

shown below:

Gp = I(kr, § -g'y n) t Xkr, ¢ +¢', n) , (8)
vhere
& ;8% '
I(kry ¢4 £ 'y n) = ;);- ;6 g (ke . 2<:os:~r:-( i @) (9)
(4 n '
m=0

In the analysis to follow both of these -terms will be
denoted by I(kr, B n), where (3 =ps
If cos :2-@ is cxpressed in cemplex form, Equation 9

can be written

i S BT 5B - |
E e P e TN g (k) (10)
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' The Besscl functions in this expression can be exprecsed

in teras of contour intcgrals in the complex z-plane as

follovs:

N :jkrcosz+dg~(z-g)
Ja(!:r) =5\ ¢ dz (11)
" 6
or

3 Jkr cosz—,jf:-(z +g:)
JE():r) = 53 e dz (12)
n

c‘

The contours ¢ and ¢! Arc pictured in Figure 3. The
crogs-hatched strips in th? figure represent the regions
in wvhich the integrunds vanieh wvhen lImul*-oo o« Now, if
the integral over ¢ is substituted into the first summation
in Equation io. the integral over c! is substituted into
the second, and if the order of integration and summ&tion

$s8 interchanged in cach term, the following results:

. : o .
- 2. - F - (C+ 2)
I():r.@ « D) = -2-%;- ( o IT 008 & Z e () dz +
c m =1
£t . g0 (@+ =) |
i - 3= + 2
o 0 Jkr cos 2z n
+ = g ¢ }_« c dz (13)
c! n=0




N
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=

Figure 3., Conmplex z~-plane and two possible integration
contours for the Fessel function.
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The tvio summations can be reducced to the closed forms
0o . .
ed > (B+ 2) _ -1 | s
-3 Bz :
n:l 1-e n . 0
and

1T -~ 3528« 2) : |
}—‘ e 1N e - ' - 1 .Q-i-l , 5 (15)
ne0 vy 3 n '

Equation 1% can, thercfore, be written

s _ 2 | Jkr ccs % g
I().x.@ y N) = - e 3 it dz (16)

(c* - c)l - e o

The negative sign before the ¢ indicates that this integraticn

t

contour is to be traversed in the direction opposite to that

indicated in Pigure 3. Substitution of Eqration 16 into 8

yiclds
. 7
0. = -2 cj " jkr cos 2z dz
P~ 2in 7 . - ¢ : &
- §F =1 =5=
(c.“C)c - ¢
2
) J 1
" ) [ cjkr cos z .. (17)
= am TIENTE St
( )c n_ . d h
¢! - ¢

=
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This is the expreesion deduced by Sommerfeld,
Equation 16 can be put in a form more convenient for

jater use by noting that

jg-rz

3 an
o 3+ 7 4+ 2 G+ 2
-3 .9.1..... 3 - 3 - § =
1-e n " ?n - ?u
= .2.% éot(.@.:z;;?; s | " (18)

Substituting this into Equation 16 and making use of the

fact that
1 jkr cos z, 1 " 1 e
(c' - ¢)
yiclds
(ke B, n) = 2 cot(~51-~z‘-) pIRE 008 & oo (20)
. I = In\ij 2n

GP i6 now cxprescced in the integral form specified by
Equation 7. In the next chapter two modifications of the
nethod of steepest descents will be utilized to evaluate

thic integral asynptotically.,




CHAPTER JII

ASYMPTOTIC EVALUATION OF THE INTEGRAL FORM

OF THE SOLUTICH

In the previous chapter the eigenfunction series
golution for the diffraction of a plane wave by a
vedge of arditrary angle was expressed as the sum of

two Integrals, each of the form

I(er, @, n) = 1;}%{3- & F(z)ckr'f("‘)dz - (2a1)
(c' - ¢) .
where
£(z) = j cos 2z (22)
and
4 B+ 2 a _ .
F(z) = cot (-——Z;-) } (23)

In this chapter these intcgrals are cvaluated for the case

of Jarge kr by meanc of the methed of stecpest descents

“and the Pauli-Clemnow modification of this method., In the
first scction the saddle points of f(z) are located, and

the intcegration contour ¢ - ¢! is closed by means of stcapcst

deccent patlz through two of these saddlem. Mext, the poles

2h
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of F(=) are located, their contribution to Gp is deternined,
.and their behavior for various values oI'G!And n isc described.
In the next section the intcgrals which remain in I(kr,@, n)
are transformed from the z-plane represcentation to a u-planc
prepresentation. In this new represcntation the integration
contour coincides with the real axis of the u-plane, In

the third secction the u-plane integrals arc evaluated by

the common nethod of stecepest descents, Tﬁe resulting
serics is shovn to be of limited value. In the next section
thece integrals are evaluated by a modification of the
method of steepest descents cdeveloped by Pauli. The
resvlting asynptotic scries is compared with the Pavli
serics and sonie of its advantages over that serics are
pointed out. It is then demongtrated that this series can
be rearranzed and put in the forn of the Oberhetiinger
series, In the final section the equations prescnted in

thic chapter are sumiarized.

-
=

=
|

0"

¢ Saddle Points and Poles of the Inteprand

The saddle points of f(z) are found by solving for

the ronts of the cquation

]

az $(2) = -5 6in =

0 B : “(24)

“hene roots are Zis KW, where N is zZero or a positive or
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negative integer, £f(2), therefore, possesses an infinite
punticr of saddle points, equally spaced along the real
axis of the z-plane, In view of the locations of'.the
gaddle points and the behavior of exp [ lkrf(z)] for laurge
values of Inz, it is appropriate to crente a closed path
of integration C'i‘ consisting of ¢! - ¢, SDP.__", and SOF.
Thic path is shown in Figure 4, SD]’._.“,an.:I SDPg. represent
the steepest descent paths .through the saddle points at
r = -ffand z =T, respectively.,

It follcws from the Cauchy residue thcorcm that

I(kr, @, n) = H}"‘[" % }‘(Z)ekrf(z) dz - S F(z)ckrf\z) dz +
SbPp SDP
w

Al
+ 275 2(Residues of poles encloscd by C,J,):} (25)

F(z) has polec at the points
£ =@+ 20N ' ' ' (26)
vhere l.! is zcro or a positive or negative integer. These
polce lic o the real axis of the z-plane, and their
positions on this axis are determinzd by the values of n, 9,
end gbe, |

Vhen -?I'.’-(-(B«- aniN) < T, the pole is enclosed b).' Cyp
end its residue nust be included in the _cvaluation of
I(x>, €4 n) as is indicatcd in Equation 25, This residve

enn be found by first writing the integrand c¢f Egquation 21




t-planc,
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Figure h, Closcd integration contour in the complex
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as the ratio p(2)/q(xn), where
7 +0 jhr cos 2z . It .
p(z) = cos( B5-) e : (27)
and
" : 2z +0 '
q(z) = Lrjn sin (-—-—5’—1-—- (28)

8snce p(z) and q(z) are analytic, R, the residue of their

ratio at z = - @ + 2oV}, is

R« D2 (29)
9 g o= -(3+ 2niN

or

R = ;%3_ o Jkr cos (-@+ 2ml) | - (30)

The recidue contridbution to G, from the pole at 2 = —G+ 2niil

) 2

A .

$5, thercfore,

J¥r cos (- @+ 2niIN) UE“"‘I"@"‘ 2)11”{‘]_ :

4
where U represents the unit step function,

03f t¢ 0O

U(t) ={ 242 L >0 : - (31)
).
'élftzo

The dast requircisent in the above definition of U(t) accounts

for the fact that the residuc of the pole has the Ceuchy

Principal value when the pole lics on the integration contour,

e
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The above contribution to GP describes a plane wave propagation
in a restricted region of space. If N = 0 and = - 4" the residue

contribution to GP has the form

Jkr cos @-¢") ur-1¢ - ¢'h.

This term describes the plane wave field incident on the wedge. The
angular space illuminated by this wave depends on the angle of in-
cidence ¢'. The illuminated region is described by 7T - l¢ -¢'l > o0,
The transition between the illuminated region and dark region, that is,
the shadow boundary, is defined by W - | ¢ - ¢'| =0, If & - <¢'<7,
or if A 77, no shadow boundary can occur. When a field point falls on
the shadow boundary the pole associated with the incident field falls
on a saddle point. If '$ o -T the pole coincides with the saddle

at z = -7, while 1f ¢'> M it coincides with the saddle at z = +T7.

All of the other residue contributions to GP describe reflected
plane wave components. The angular regions of space illuminated by
these reflected fields are described by M- 2N - (§+ ¢'), 2 0,
and the boundaries of these fields by 7T - |2n™N - (p+¢')| = 0, except
when N = 0 and (¢ 1—¢,') =g -¢'. Clearly, when the field point
falls on a reflection boundary the pole associated with that field

component coincides with a saddle point,
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The poles of F(z) play two roles in the determination

of the asymptotic expression for G First, they deternine

p*
the planc wave components of the field through the residue
contributions discussed in the previous paragraphs.

Sccond, they strongly influence the form of the asymptotic
expression for the integrals in Equation 25. For @hese

\ reacons, it is important fo have . a complc;e descripiion
of the pole configurations of F(z). In particular, the
index N of the pole nearest the saddle points of the
integrals in Equation 25 must be known,

Pigures S5 and 6 illusérate_a method for describing
the possible pole configurations which can occur as ¢¢ and ¢8'
are varicd;ciié assurmcd to be fixed at iOO degrece in
this example. Figure 5'i;lustrates the pos;ible pole
configurations for = ¢ - ¢'; Figure 6 is drawn for
B= ¢+ ¢*'s The rectangles denote the range of Rez over

vhich the poles move as ¢, the angle of ob'servation,

varics, The right-hand side of ecach rectangle corcsponds
to ¢$ = O, and the left to @ =«¢. REach rectangle corresponds
to a fixed valﬁe of N, the pole index, and ¢'..the angle
of incidence, |
The angular regions $1luninated by the incident
tnd reflected ficlds can casily be determined from this

diagram a5 can the locations of the field boundarics.

» . ai—r s —tass -8 B e o> (o0 o L s, Kot
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The illuminated regions are defined by the values of
¢, @', and N for which the poles lic between the verticol
1ines at 2z = + . The fiecld boundaries occur for the

valucs of ¢, ¢§'y and N at which the polcs.éoincidc with

these lines.

It is important to obscrve that various poles can
lic near the saddle points at 2z = +1qr, depending on the
“walue of ¢ and ¢¢'. In Figure 6, for example, if ¢¢' = 100

degrees and ¢ = 100 degrees, the pole N = O falls near

the caddle at 2 = =, and the pole N = 2 lies near

£ =+« On the other hand, if ¢' = 0 and ¢ = 0, the
pole N = =) is necar 2 = - T while the pole N = +1 is . '
f near z = +T., |
Figures 7 and 8 picture'the possible polc'cohfigura~
tions for a hO degree wedge. This example illusirates

that as w decrecaces toward zero an incrcasing number of

poles will) fall within the region =T £ Rez £ T, and that
higher order poles, that is, poles described by larger
viadues of N, will lie near the saddle pointis.,

Later in the analysis it will be important to

recognize that the pole nearest the caddle point at
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5 = + T ic deseribed by the N which most nearly satisfies v

the cquation
it - (G ¢') = 27 . (32)

The next step reguired in the derivation of the
asyaptotic expression for GP is the evaluation of the 1
tvo 3ntegrals in Equation 25, that is, the asymptotié

evaluation of

;“ e WATK: jkr cos z
Ik (e m) = gl cot(~5—2) e dz (33) !
sDhp
-
and
|
) =) (B 2\ _jxr cos = ’
SDR"

| ———— o e o SRRy MR St o R IR P T ey S a e nont T iesteaseenan i AMEAY- - Smmae rISShlatest menme: Al i o S e 0 ate oo
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eransfornation to a New égmnlex Plane

In order to ecvaluvate these integrals, it is moct
convenicnt to transform variables io'a complex plane in
vhich SDthrcoincides with the real axis. This new complex
planc will be callcd the u-planc. The transformation
equaticn relating the z- and u~planes is fournd in the

followinﬁ vay. For values of z on SDP+'

-‘

Ref(x) € Ref () : _ (35)
end
Inf(z) = Inf(+T) ' (36)

Therefore, on SDPﬁW' £(z) can be written

£(z) = £(a0) - v° ()

then u is real, Substituting Equation 22 into 27 yiclds

the transformation

Jcoo z = -5 - u® ﬂ ' (38)
or

4T
u=ge V2 cos % ’ (39)

The cheice of nign must now be made. The cquation for
thoe wtlecpest deszent patn ShY5- A5

€03 X costh y = -1 (40)




"——

In the vicinity of z =T, this reduces to

x-W=Y | . ' (M)
a straight line making an angle of ‘&50 with the x-axis,

In this vicinity 2z can, therefore, be cxpresscd as

g =+ 8¢ 5 ' (42)
wvhere & is the distance measured along the path. The value
of ¢ 36 zero at 2z =T, positive for Imz > 0, and negative
for Inz £ 0. It follows from Equations 39 anci 42 that for

& in the vicipiéy of

'uu;(-'laﬁy | | '(‘*})

then z 9 O, u must be positive if integration along 'SDP_

88 to correspond to intcgration from -~ 00 to +00 a2long the
real u-axis. The minus sig;m shou)l d., therefere, i)e uced in
Equation 39. | The transformation which maps SDI‘-T‘. onto the

rcal axis of the u-plane is, therefore,

-5 T '

Uee-e W2cos (44)

g
2
it can be shown in a similar manner that this trancformation

onto the real axis of the u-plane,

algo naps. S?P_Tr
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.Figurc 9 pictures the strip of the z-plane defined
by 0 & Rez £2W. SDP; is also shown here. Figure 10
ghows hovw the ;afious regions of tﬂig strip map onto the
u-plane. Other strips of the z-plane map onto cther Ricmann
cheets of the complex u representation, The strip dcfined.
by -2 < Rez < O maps onto a sheet adjacent to the one
pictured in this figure. The small, leticred circles on
these figures illustrate the manner in which the poles
of F(z) map.onto the u-pl&ne. Notice that the poles in
the u-plance move to the origin heir countérparts in
the z-planc move toward the saddle « 2z =T,

Applying the transformatic defined by Fauation Uh

to Bquations 3% and 3% yiclds

o0 '
-Jkr 2
o] dz =kru
It“(kr, [3, n) = = ri-{m—- K g(u) U du (h5)
' -00
vhere
glun) = cot(-g;gﬁgiul) : (46)
end
v
I %
e 2. (47)
z(u) .
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Figurc 9. A portion of the strip of the complex
t.-plane defincd by O £ Rez '£21M, The dotted line denotes
ShP;c and the small circles represent poles of _F(z).
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Figure 10, The portion of the complex u-plane
Ccrrecponding to the portion of the z-plarne shown in
fliure 9, Several of the z-plane boundary lines are
§nélented, The cireled nunt s indicate corresponding
Teclons dn Lhe tvo plunces.,  LiPg coincides with the re2) w-asnis,
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phus Equation 45 can be written b
®
~§(kr + 17‘{) st ‘Bs 2(u)
) = - & 2n ~kru :
It‘lt(kr' gy n) = v — ”é‘” du (48)
-:oo
or
oo
«J(kr + m "
~kru
. ) = -8 G(u) du (49)
I‘“‘( ry@, n | g ads
with
cot A—p-2aML
o = 2 (50)

This completes the transformation of It1#kr. @, n)
from the z-planc to the u-plénc reprecentation. In the
renaining sections of this chapter, this integral «ill
be cvaluated by the method of stecpest descents and the

Pauli-Clemmow modification of this method.

Evaluation of J

==

_(xkr, G, n) by the Mothod of Stecepest Decscents
i

In this section Equation 49 is cvaluzted by the ordinary

112

eethod of stcepest descents, In this evaluation it is

acsuned that aone of the poles of F(u) lie rear the origin
of the u-plane., Thic is equivalent Lo acsuaing that none

of the poles of F(z) lie ncar 2 = +1r. Physically thin

B Nm———
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aasunption implcg that the diffracted components of the
ficld are being evaluated at points well removed fronm
¢hadow and reflection boundarics.

If G(u) has no poles near u = 0, it can be expanded
$n a Maclaurin series having a radius of convefgence
extending from the origin to the first pole. If this
expansion is made, and the result substituted into Equétion

L9, Iﬂr(kr, ®, n) takes the forn

3§ (kr +1£:) -~
e -
Ir“(kr.@. n) - T Z c; ¢y n) -
m=0
©0
m -kru2 ' ,
u e du . (51)
-0
vhere
(n)
4 l d =
¢ @y n) = 5 e G(u) (52)
: u=0 !
(z = 21

The positive osuperscript on the cocfficients‘of the Maclaurin
serics indicates that the derivative of G(u) is to be
e.\'n].uatcd at u=0 .on the Ricmann sheet correzponding to

the z-plune sirip 0 £ Rez £ 2  The minus sign derotes

that the evaduation is to be made on the u-planc¢ Rienann




41

gheet corr.cspondin[; to the ntrip =2TF < Rew < 0.
The odd terms of Fguation 51 integrate to zcro

g0 it can be written

: -j(kr + H) (2‘
¢ _ 2 (p -
It‘\r(kr’G’ n)e~ - T Z Con @y )

ns=0
o
. 2 -k u2
o \ uM ™Y qu (52)
-¢o

Integration of this serics reduces it to the following

form

~3(kr + P
, ¢ % g
I, (e, @ n) e - Sy [co @, m) 7=+

=,
+ 4 ']___'.2_'5"'(?{.1 = 1)_ .
L Con (€ n) o
m =l
|
m+l] (54)
(xr) °
or, in morc compact notation,
Ty, oo '
c-—j(kr ) A R'm + %)
ItTi(kr‘ s h o wedetn CZm ((3' . m 4+ S
l

—_ =
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The coefficients of Equation 55 afe found by the

simple but tedious evaluation of Equation 52. The first

three of these coefficients are listed below.

N ' :
_ C: (@s n) = & cot ﬁéﬁ"‘ ' - : -(56)
¢t (f, n) = jc* (@, n) b & obs saa” sy
2 (fs m) = Jcg (C, 5t 5.3 %n (57)
$ .o bt 5,3 M Bear
Ck(e.n)--hco(e,n)[8+n cse 5+
5 1 o 2 .(-3-2'—1-}—‘
*{6712 - 3]]“} c5¢C . °n | (58)
Vhen Equations 8, 25, 33, and 34 are combined, GP
takes the forn
GP = I.‘.“(kl‘, 9= ¢- "". n) + I‘.v(kr. F-’-’ ¢-“'| n) 4
Y I"'iT(kr' P= 5/)«0 ¢'y n) 1;.
¢ I*,n_():r, @= F+d'y n) +
o oJkr cos (Bogddye -|' b)) +
+ planc wave terms corresponding to
reflected ficld components., (59)

Je

Jt follovs from the derivation prescented in this éection

that co long as the ficld point at which G, is being evaluated
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doces not lic on or near a chadow or reflection boundery

GP can be written as follows:

«3(kr + Ep 0?( .
e = 4 t + : ' .
Spt = weyn zl[cem(""‘g v m) + Cy (B-gy “)]

ne=20

g

- .
.) 5
- m'li Z[C;m ($+@', n) + sz (¢+{5',n)]°
2
m=0

~~

5

&+
+ [N

. ' ., oJkr cos (95"5"')0(1“195'5("‘) =

+ plane wave terms corresponding to reflected field

conmponents, (60)

This equation is identical to the asymptotic exprecsion
for Gp devecloped by Obcrhcttinccf for the case in which the
field point is well-rcnoved from shadew and reflection
boundaries.s If only the first term is retained in cach
of the cummations.in this equation it reduces to the

faniliar fcrm for G, uged in the geometrical theory of

P
diffraction, that ic,

T m
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= jkr
e J

Gp = :ff" (D(n., ¢§ - ¢') 2 D(n, A4 ‘;-.([))+

+ oJKT cos ($-¢) u(m- | gJ-¢'i) +

+ plane wave terms corresponding to reflected field

components, . (61)

where

O-J H-

( g ) ) sin EF
D n, ¢ ¢' = re== & 3 7
nye kW(cos ;3;' - CO8 *2:-;12:-

i8 the edge diffraction coefficient.,

It was pointed out in the examples on pages 29 through
34 that when ¢4, the ar;gular coordinate describing the 'ficld
point, approaches a shadow or reflection boundary a pole

approachkces at least one of the saddles at z = +T. In such

a situation the corrccponding u~plance pole will move townrd

l w = 0, This will causc the radius of convergence of the
Maclaurin series used in the evaluation of Equation 49

l to ghrink to zero, and the cocfficicents of that ceries to
grow without bound. This renders invalid the asymptotic
serics cxprecsion for at lecast one of the first four terms of

l Equation 59. A method must, therefere, be developed for

evaluating Equatiqns 3% ard 34 for the case in which a pole

of F(z) lics rear the saddle point. One such nethod io

diccussed in the n2xt cection,
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Dvalvztion of T T,gggj_LQ_ 1) by the Fauli-Clemrow Modificd
-l e -

Method of Steepcst Descents

In this =ection Fquations 33 and 3l are cvaluated for
the case in which a single pole lies near z = «ffor z = +1.
This e¢valuation utilizes the basic ideas cmployéd by Pauli
but yiclds a mere general result., The approach is somewhat
caéier to follow than FPauli'c, and the result is in a more
convenient and useful form since the confiucnt hypcrgeometr;c
functions are not introduccd.

The essential steps in this evaluetion are the following:
a) The intepgrand of the equations is first written as the

product of t&o functions, One of these describes the
pole necar the saddle; the other is analytic at the
origin and at th¢ pole in question,

b) The integral is then transformed to the u-plane
representiation. The nnaiytic portion of the integrand
i8 expanded in a Maclavrin seriecs, and the order of
pnmmation and integration is interchanged.

¢) The resulting series is then integrated term by term,

This process is dencribed in detail for the evaluation
of 2.[__“_():1', e, n) fox; the case in which the pole of F(z) at
2 = -(Bin near the saddle point at z = - The results
are then precented for the evaluation of I;w’““ By n)
for a'polc near 2 = +W. The technique used in this sectlion

failc for onall values of n,
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It ic convenient to begin our discﬁscion with Equation 33.
The integrand of this equation has poles at z = -(&+ 2nWN,
S0 long as n 5.5' soncwhat greater than .1 only the polc ot

2 = -(3 can lie ncar the saddle point at z = -, A

techrique for evaluating I_,“(kr, ®, n) for this case will
now be described, If the integrand of Equation 33 is

multiplied and divided by (cos z - cos(?:), then it can be

written
z +G\ jkr cos z. 1 Jkr cos 2z
°°t( an )° = A(z) c08 % ~ cos(j * (62)
where
1 G"' 7' 6%
H(z) = cot (—E-‘-r-)(cos Z - cOS (5) . . (63)

H(z) 35 analytic at and near z = -@, and H(-() = 2n 5inG.
The information concerning the pole at z = »(3 is contained
nov in the function (cos z - cos (3)-1. If I_.“(kr, @, n)

is now trancforried to the u-plane representation it takes
the forn

o0
"e§(kr + g)

2
. ~¥ru
I._.“,():r,(.s. A) = ~ & H(u)e

52{ 2'rn u? 4 ;j.a

du | (64)

-




vhere

cot 2lw) +G

H(u) = -- 8 (coc z(u) - cos(3) (65)
sin --g—‘l-)- (3 ' g

a =14+ cos(3 | (66)
and
j(u2 + ja) = cos z(u) -~ cos @ ; (67)

H(u) is analytic in the vicinity of the origin so long as
only the pole at z = -@ is ncar z = =147, and can be expanded

in a lMaclaurin series. Therefore, Equation G can be

written
_ «§(kr + ;',-) s
» - c - L)
I_,n_().r, @ n~v YT z Bm((h n)
s
. m=0
00
" :
\ "7,_»"3-“':- =kru du (68)
v o+ ja
ol ¢ )
vhere
- 1 A" |
Bm(@. n) = ;-,- (-;;1;'-‘ P(u) (69)
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All of the odd ternms of this series vanish., The remaining
teriss can be cxpressed as combinations of wcil—known
functions, namecly the Fresnel integrals and inveree powers
of kr.
The cvaluation of this series is now desceribed., The
intepgrals are .trcatcd first, then the cocfficients arc

discussed, The integral in the first term of Equation 68 is

o

( ) e")\'ll

I () = —_—

” -u2 + Ja
-0

du |, - .. (70)

wvhere )\ = kr. This can be evaluated by first asfferentiating
with respeet to )\, integrating on u, then A, and finally
. again on u, The details of this proceduvre are as follows.
‘Consider
o

c-%(ua + ja)

d (u2 + ja)
-00

du ° . (?1)

Differentiation with respect to N followed by integration

on u yiclds

P
o 2 .
a%:[lo()\)c-j 1« = or:"‘.p\‘l K ¢ du = --fi—-’-{:‘""j}“"l (?2)

-00
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Integrating now on A results in

“ A

2 -jaa!
I (Ve | du -/w‘g 2 . - (73)
,° : g u? « Ja VA~ : :

=0

The first integral in this equation can be cevaluated by

integrating over the closed path C shown in Figure 1ll,

U~ PLANE

<O

Figure 11. A contour for cvaluating S _Eﬁu
u

22 + Ja

Since the intcgral over the semicircular part of C vanishes

as R approaches infinity,
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oo :
du _ du 1
2 - r"- . T ) (7 ')
u + jc’l -j I; -3 ,;.
. (uee V) (u =« ¢ . V)
= 21 {Rcsiducc of poles enclosed by C}-
The rccidue of the pole at
“—
U = ¢ ‘ﬁx—‘
is
3T
(-2/ae D
and, thcrefore,
co i 3’
dn__ _ e
L £
u® + ja a (75)
=Y - o] . 2
Substituting this result into Equation 73 yields
kr (
) ~jan' (kra + 3°)
I (kr) = «fiFed* | & ap - .'iﬂ;c ’ (76)
o Vx i 1

0

The integral in this cquation can be exprecsed as a complex

Fresnel integral by meuns of the cubstitution ad' = gta.

S s m—

o

T
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The result is

X
o
-3 wv. .2 ;
Jkra K -5 5T
I (kr) = f}a [° . gc o m-]. (77)
: 0

where

(21::':. )
X ‘= (¢

This can also be written

sy 2firpdkre -5¢2 -
Io(Lr) = ;f at . (78)
(kra)®

The evaluation of the higher order integrals in
Equation 63 is now quite straightforwurd. The integrand

of the next cven term can be expanded as follows:

v@ + ja ) . ja (79)

. Thercefore,

o= oo
2 TR - .
-EE——- ki IR jol (kr) =
u ¢+ Ja *
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1
2
0 i?;:-) - j:\Io(lu‘) . (80)

The integrand of the term correcponding tom = & can be

written
A 2

u 2 (-4a)
T = U - Ja s g (81)
u ¢+ Ja uz + Ja .
eo
®

5 u = S 5 - Ja E-i- + (--j:.x)2 Io(}:r) . (82)
u ¢+ jJa 1
b 2(kr)? (kr)®

th

The integral of the gencral 2m term can be written

= ]
uzn c-krua du = 1.._&"'5.".(2("1 - k) - l.)..‘@._f\ .
> 1
u + ja (n - k) me-Xk+ 3
2 (kr)
=00 k=1
o (=)~ L4 (~ja)® I (kr) (83)

or, in more compact forn,




33

m
©o
W@ eru® r(m -k 4 %)(-jrx)k .3
> ¢ du = 1 +
u© + ja (m=k+5)
~00 k=1l (kr)
¢ (=3a)" 1 (kr) (84)

Substitution of this into Equation 68 yields

©0
«J(kr « 11:-‘)

e -
I_w(kr. 8. n~ - YA P ((.‘. n)

. m=0

Rn -k ¢ %)(-—jo)k =3
(n -k + %)

+

(xr)
k=1

+ (=3a)" I (kr) (85)

The coefficients, B;. (e. n), are rclated in a simple

manner to those of series developed in the previous section.




S
It follows from Equations 65, 67, 69, and 50 that

3 —d(&n)
(2m)¢ duten)

{:iG(u)(u?‘ + Ja)}l ' (86)

ue 0

,.3;. (@. n) =

This yieldc the following relations:

B; (?. n) = -ac:; (e, n) ' . (87)
and
B;. ((’. n) = jc;(. - 1) (e. N) - aczﬂ (P. n) ) ‘88)

Since H(u) is analytic vhen z = - @+ a1l of these
cocfficients are finite so long au only the pole at
g = - Papproachco the sanddle at = = =T, Ia particular,
they are finite when G.sTTZ The following analysis rcv;nlo
the value of these cocfficients for this value of 3,
H(u) can be written as the sum of an even and odd function

of u, that is,
H(u) = HOCu) + HOCu) | (89)
vhere

N (u) = Aln) ; (~u) (90)

and
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no(u) - n(u) -2- "(-\l.) . (91)

In order to find the form of H%(u) and H®(u) it ic most

convenient to rake the change of variable

z(u) tW(u) «1r (92)
6o that

w v
u--cjﬂfé‘coogz-ojxﬁ‘oin%’ (93)

The allowed values of W are restricted to the shaded ctirdip
of theWe-plane shewr in Figure 12, Therefore, a change
in the sign of Weceorresponds to a change in the sign of u,

This pernite B®(u) and H%(u) to be writlen as follows:

° cooW(u) + cou@ Wu) « P -
n (u) = 2 > t?_(:ll_). [cot Zn +
2

- 4 cot

-\XU)Z; &-‘“‘ ] 5 (9’!)

and

o cosW(u) +« cos O W) + 6 -9
1l (u) = & son ‘:_)_S_‘!_?_ [cot >n -

q

«Wu) + @ -
en J

(¢5)

- cot
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Now vhen (Js.- +T, H%(u) = 0 und, therefore, all of the

even coefficicnts of the Maclaurin cerics cxpansion of

B(u) vanich, that is,

B;_. (G n) =0 . (96)

Lm W

| \\J W- PLANE

Figure 12. The conplex W-plane. The values of W
allowed in Equation 93 are restricted to the shaded regions.,

— Smme. SR Tt T e eee STNNT gy g Soerevpmes | o




For this casc of (3 « T Equation 85 reduces to

«3(kr 11::)

B, (M n) I (kr) (97)

o
I_“,(kr.‘\'f. n) eV A :

Thic firct term must be retaincd since the pole in I (kr)
at @=T just cancels the zero in Bo(@. n) to yield &
finite value, That value is found by writing =€

and toking the limit as €+0. The detailu are shown here,

Bo(‘h’:eo n) = = (1 ¢ con[Tr L€]) cot é;f-
xIne (98)
: !y
w/z <3G
Io.(kr) ~ T e (99)
80
" 14m I_“(kr. Mze, r) = ¢ ;- c'jkr (100)
€>0

The plus eign applies when B>, and the minus sign when
@< . This dincontinuity in the diffracted ficld juct
conpencates for the diccontinuity at the boundaries of
the incident and rcflected ficldg, 1>;‘oducin,; a continuous

totul ficle there. The valuce of Eouation 100 dircctly




%8
on the ficld boundnry is zero. The Cauchy principal value

y Q0 was thovm

nop-

of the associated renidue contributicn in
in Equation 31,
The pole at 2 =« =@ = = (¥~ g') can lie near the

gaddle point at z = «TW. WVhen thic svituation occurs

I’“[kr. @ n) = = 171?163‘ g cot( 92; ’4)05,"' €oD 2 4z (3h)
: ' 8DP :

mugt be evaluated in the manner Juct idlustrated. This

evaluaticn yiclds

oo
«J(kr « 1{{) '
L 4
I.r(kr. B n)eas - Jal?_x;;'l_'- | B, (e. n)
' m=0
| z [tm - x o 1) (-ga)% =2
. - . l) *
(u - &k =
" (kr) ‘e
. ksl
¢ (=3a)" Io(kr) (101)
With
1in T (kr. Meey, ) = ¢ = 2 o~ Jkr 5 (102)
c»0 *V
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Bo(0s n) = -aC (B, n) (103)
and
n;.(p. n) = 302(. = 1)(@. n) - .c;.(e. n) . (10h)

Ficures 5, 6, 7, and 8 illustrate that the poles of
F(=) located at 2 = -Po 2iffa can 1i4 near the saddle point
at 8 = W when N 43 a negative integer. Vhen this situation
occurs I_.w(kr. p. n) can be evaluated by the method uced
for the case in which the pole at 2z = - approaches that
oadd}c. However, the mcthod nust te nodified slightly to

account for the fact that the pole is deseridbed by arditrary

negative N, This modification entails ciwmply replacing the |
ters (cos 2 - cos(3) of Equations 62 and 63 by (cos z -
cos (-('-H 2n¥ii)). This gubstitution makes ii(z2) analytie
‘at ¢ = = (3 + 20 and allows expansion of M(u) in a Maclauwrin
series. This substitution puts Equation 66 into the forn
a=14+cos (=(3+ 2nM). All other cquatiorns of the
.analypis rerain unchanged in form. Therefore, vhen Gp
10 to be determined at fiecld points for which - @ + 2N
is ncar -, Equation &5 chould be uned to evaluate
I.."(kv. (@, n)e In Equation 85 and the allied equations,
that 3¢, 87 and 83, a = 1 ¢+ cos (- P+ 2rWi),

It also c:.m be shewn that vhen Gp is to bc deternined
at ficld points for which - B3+ 2r¥W} is nearW, (see Figure 8,

for example) Equztion 10) should bte used to evaluate




6o
I‘"(kr. @y n)e In thic equation a = 1 + cos (- B+ 2wk,
In this cave N 36 a positive fnteger.

If n i close to zero, that 3a, §f the exterior angle
between the faces of the ccattering wedpe 4o anmall, a
nrge nunber of polee will lie ncar the saddles at
g« 2. In thia case the rad’us of convergence of the
Maclaurin serice for N(u) will be very snall and Equations 89
and 10) will fail,

A nundber of cexamples 1i]uotrutin5 the use of the
equations develoyed Sn this acction are diccuseed in
Chapter IV, However, before proceeding with this the
redation betucen the exprecsionn developed here arnd those

given by Pauli and Oberhettinger wil)l be examined further,

Redution Lo Pamdi's Asymutotic Serien

Pauli was the first to introduce the method of
steepest deseents used in this work., He applicd this
method to the evaluation of GP in a canner ruch like that
used in this ;tudy. Pauli, however, .crforaed one operation
at the Leginning of his evaluation which cuused his reculting
asynptotic expreccion to be of lese general applicability
than the onc derived here. The mtarting point for Pauli's

derivation wagc So:merfeld's nrrats vhich is given by

Equation 17. Fauli®s path of intepration for Lhis equation
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was ¢loscd in the manner chown in Figure 4, and the pole

contrivutions to G, were cvalduated, This reduccd (3p

»

to the form

OP " g F(z, n, ¢ - ¢g')dz + S Pz, n, g=g')dz 2
8DP_ SDP,

') 13
Y s Flzy ny ¢ +¢')dn ¢ ‘ Flr, n, $¢ ¢')z
8OP__ SDP, .
¢ Recidue contributions (205)
vhere
3 2
1 - k
r(ﬂ. n, ¢ 2 ¢') s - m‘ : * .-3 E-:—-E.— ej Fee s (106)
° - e

By making the substitution = = W= T in the first and
third integrals and 2 = Wi in the sccond and fourth,

Fauli recduced GP to the sum nf two integrals,

«Jkr cogsW
el cin X e
.P'thn cin. toe T - cop B0 (9 -¢ 1) dwg
sor, " .

1 . T .-jkr cosW -
2 Z2%m " cos T - cos W {8 ££e)
8DP -

dwe

¢ Residue contributions (107)
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The contour SDPO in the W-plane is illucirated in Figure 13,

o oo -LPLANE
-~ l/,--"
,af’fﬂﬂffﬂfﬂ ;f”#
‘ / /ﬁ
F’H,f’#fffﬁf - !,a”
/{_._‘7?',___ e e'ﬂ-",'/. o fRew
|-27 4 “|o / 2

WA

\
\

Figure 13, Integration contour SDPO uced by Pauli

to cvaluate GP'

Pauli then evaluated thic cquation by the method descrided
in the previous scction,

Consider now the poles of the integrands of Fquation 107%
The poles which lie near + I or « MWin the z=plone will

dic ncar the erigin in the W-plane, If & pole lics neur

P iRl T T o e e e

»
P Y.
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g =T (or =Tt) but none lies necar 2z = =W(or), then a

single pole will lie near W= 0 and Pauli's method of

stecpest descents yiclds a ugefu) rceoult for G ’If.

P’ i
however, onc pole lies ncar z = +TC and another near 2z = =T, |

two poles will lic near W= 0, In this casc Pauli's method

fails and his asymptctic cxpansion for GP is not valid.

Pauli reduced the generality of his result when he

éohbincd the integrations over SDP__ . and SDP* into a

1 1l

single cquation., The gencralized form of Pauli's expres-
sion developed in this wor)k can be applicd to cases in
which poles simultancously lie ncar 2 = + and 2 = -1,
since the integrations over SDP_," and SDPH],v:cre evaluated | |
indiyidually. '

Pauli's asyrptotic expancion for the integrals in

Equation 107 is

e-jkr cos W

| sin | =
e2\in n - T i e 8 dw
. : - '
SDP°
‘ 1K
1 . v "j(kl‘ L 1‘-)
e U = = 5in = ¢ .
B~ /[adn »
©o
1
3" [-(T-n—‘-:—-g)- A, (B)s (kra) - - (103)
/—’ﬁ:\ en e n ) (kl‘)m

n=0




- 6h
vhere
1
1,-1 - - '
.Sm():ra) = (m - 5) " (kra) Fo(1, -n + % y Jkra) (109)
n
-Jm > d(zm) i e
A ((5) " 9..-,_)' ( — 088 2 COP L. .. — - (210)
i (203 00'%2) | cos T cos 222 gos
n n 4
W = 0o

and a =1 +cos =114+cos( ¢+ '), The functions

Fz(l. -1 + g— s Jkra) are coenfluent hypergeomeiric functioas.

These can be writien in the form

(en)]
) :
m e o, -jt
3 . e jkra e
I"a(l, -n o+ 5 jkra) = (m - -2-)(.(1*:1) “e9 A
m+ g
t
ara (111)

110 . . % .
has shewn) the integrals in this equation are

If (as Ott
repeatledly integrated by parts Equotion 108 can be written

$n the form ehown bvelow,

o sin%'e-j(kr - .
B '17,/'2‘ n
BN
% . k-lr(““"*%‘)
AZm(O)J‘ (-3ja) Tt
me-x + 5
(kr)
m= 0 |k = 1
y
¢ (~3a)”® I (er)| : (112)

e
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Pauli's exprecsion for U, can be derived by combining

B
" Bquations 85 and 101 for a comzon valuc of N, such as N = O,

. Combining these equations results in

U; = I‘v(kr. n.(J) + I_“(kr, n,@) =
oo :
3(kr - 11’) + - ,
i Jkr - ¢ (BZm(e' n) -+ Ban((é, n)) .
wve'n e

m=0

(--{,u)k"l [?m-):+ %—)
(n-k+%)

(113)

+ (=3a)" I (kr)

= (kr)

It can casily be shovn that

B;m(@' n) + B;m(e' n)
2

= §" sin}r Ay @y 1)

hence U; = UB and the relationship of the Pauli scries

to the generalized serics is establiched.

Relation to Cherhettinrer's Aaviintotic Series

Oberhettinger has studied the diffraction of planc
waves by wedges which have exterior angles grecter than
180 degreces. He showed thot the total field cen be

expressed as the sum of four integrals plus a number of

plane wave terns., The integrale describe the diffracted

|
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ficld and the planc wave ternms describe the incident and
reflected fields; as in the solutions previously described,

* Oberhettiinger's expression for Gp is

Gp = I(kry, (r- (= ¢')), n) + Ikr, (T+ ($-¢')), n) &
g I(kr, (M- (S+%")), n) 2 Ikr, (T+ (S+ '), n) +
+ oJkr cos (@~ g') U= |- ') & kT cos ($+8') ,

U(Tr'"S‘S-O- ¢!l) + ejkr cos (¢+¢! - 2nT) ;

v(r - ' prg - Znﬂ'l) | . : (114)

vhere
o0

-3kr cosh
I(kn§, n) = =1 5i.n( g—) -t

x
a

cosh X - cos ) o (Ell))
n S n

o
The relation between this intcgr:il and the integrals given
in Equations 33 and 24 will now be establiched., Equations 33

and 34 have the form

. -1 B+ 2\ _jkr cos 2
I;tjkr.@, n) = Titn3 ( cot | =5-= )e dz .(116)

SDP.; 1

Roplacir;g 2 by w=-9r in the int'ccral over SDl’,vand Ly

W+Tr in the integral over SD}’ﬂTyiclds
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1 B+w IMY ~jkr cosw
I;,n,(kr. @y n) = i g cot( 5 )c

SDP
o

dw (117)

The path SDPo is shown in Figure 13. The integrand of
. Bquation 117 can be written as the sum of an cven and odd
function of W, The integral of the odd part over SDF |

vanishes, leaving

4 1 N AT
SDP_

+ cot dw (118)

Bzmw-w o~ Jkr cosu
an

Combining the terms of the integrand reduces this to

zmr
. tl 2 sin n
I‘i'n(k" Gy n) = IR s

\]

i3 v
g 5 ne' cos (:s;
)
' | SDlo
. . e--jkr cosw‘m>

If SDPo is deformed so0 as to be coincident with the
Imtd-axis, and then is rotated by 90 degrees, by replacing

@ by jx, Ecuation 118 takes the form




T -ileye sh
t?)' 6in p:\ > JRr cosh x
' I;“(l:r! e’ n) = kim ik B s e BT dx (119)
n n

; : 0

Reversing the order of t.hc argunent to y + (3 and
replacing this by 8 reduces the integral to that usecd by
Oberhcttinger, that is, Equatién 115. The following
notational corrcspondencc_cxists then between the integrals

used in tris wvork and those uscd by Oberhettinger,

I_,h_(}:r, (P-@')yn) = I(ur,9r - (PH=-g'), n) (120)
I+,H(kr, (p-p')y n) = Ike, ar + (S=$1), n) (121)
I_m_(lcr, (+¢'), n) = Xkr, gr=- (L+¢'), n) (122)
I+1lf(l:1" (p+ ')y n) = Xk, qr+ (S+¢*), n) (223) -

Oberhettinger used Vatson's lemma to derive an acynp-
_ £ ynp

totic expression for Equation 115 valid for cascs in which ¢
qQ 7

the angular coordinate of the field point, does not fall

-

near a ficld boundary. That exvpression is given in Equation

1_21&.
4 | _ co
=3(kr + y) 1
I, n)~ ~ e ’ A, n)(H T (¢ %) .
i ' m=0
) 1 E
| 1 (12h)
S+m

(xr)
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with
1 7 & . -
A:(S. n) = m;' cot ( g ) e (125)
o 5 1 SyJr a2 2¢ 8§ "
AI(S. n) = - .y cot (Zn) {;; + ;:5 csc (-2-5- )} . (1.186)
and
. 1 $ 5 2 2( 4
Ag(&, n) = E-fé‘-glfn cot(é—ﬁ- {2-'4»(6“2 - nl’ycsc (';n-)+
. & aae® (_§“\ .
I csc (5o . : (127)
n

This coefficient differs from the form given by Oberkettinger
by a faclor of one-half. Oberhettinger's coefficient is in
~error. These coefficients have the same form &s the

C:(@, n)'s derived in this work; in fact,

: (]
A(S, n) = 21{ 5 o(@, n) (128)
O
_Al(s. n) = 2111/7' c5(py n) - | (129)
o (1) .
AO(S, n) = 2,]4}‘" c,‘(e. n) | (230)

e e

P
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and in general

A2(§, n) = L) c: (@, n) . (131)

Equation‘124 is, of course, identical to Egquation 55. Thc&
were derived from different forms of the same integral,
Equation 55 was derived by a direct appiication of the method
of steepest descents; Equation 124 was derived by Watson's
lemma. Both equations fail on and ncar field boundaries.
In order to derive'a more general asynptotic forn
for I(§, n), valid ncar field beundaries, Oberhettinger
split Eouvation 115 into two part5, The first parv was
associated with the ¢iffraction by a half-planc; the second
dcséribed the modification of this half-plane diffraction
term caused by the finite wedge angle. The first part
reduces to the Fresnel integral and an infinite series in
invérse power of kr. Oberhettinger apblied Watson's lcﬁma
to th? cecond integral to form an asyaptotic series in
inéersc powers of kr. Oberhettinger's series is shoﬁn

in Fquation 132,




-7
. ©0 . !
~jkr cos§ + j'g >
IS, n)~n - & e ogn 9 eIT g1 - (132)
T 1
‘ (akr)a sin g—
o
™
~Jkr - 3§
-e " ()" Rm + -g:) (S, n) -
m=0
1
; (xr) d |
| \':here)(m(é) = Am(S. 2) + Am(‘?'ﬂ'-.cs y 2) =
3 (-1)"
o 3‘ 2n + 1
212 (sin 52«) i

Although it is not mentioned explicitly by Oberhettinger,

if |Sl>o( then § must be replaced by § - 2« in Equation 132,

If $ is replaced by 1l + Pthis series takes the form




sk cos @ + 5T

J,;"f\

x(e. na -8

-3kr = § T

- e
n e
l
'Xn(@)] T
m¢3
(xr)
where
a =14 cos(s’»
and
e
(-2)" cos =
2
! Xm(e) Y’a"ﬂ-al:l :—l

0
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b
I gt
|

-

(kra)2

gen (W ‘3)

()" [?m + %)[:‘.n(s. n) -

(133)

(134)

Substituting Equation 131 and ljh‘gnto(133%rccult51n
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3);3' cou@ ' r ;. 2
1(@. e - & f‘?‘ een (W2 p) %c-‘h" aT -
(kra)
co
-“r - J : %) C;ﬂ(e. n)
) a ,; 2l zn
(Vr)
- P
2 : "
- 3 KR! (1395)

The correcpordence betireen Crerhettinger's expansion
and the generalizcd Pauli expancion will now be invectigated,
and it wil) be chown that they are siuply different
errangenents of the sume cerfes. Consider again Eguaticues 85
and 102. %Thesc equations are aritten below in a sligchtly
wodificd forn.

\ -J(kr ¢ ,.-) Z“ .
- - n
It'(kr‘PQ ﬂ)N & sza-‘ W Io‘kr. P) 22.(G ’ n)('in) +
As

n
& [?; -X ¢ %)(-ja)k -
Pon 2 ' 3 (130)
(v - % ¢ 50 -‘
X = 1 (kr)
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As before, @ = 1 + cos (-(34- 2:11.'}\‘), but here the Fresnel
intepral has been factored out of the sumnation. The
sunnation maltiplying this intersral can be written in

closed forn by sctting

(-ja)m ~ (,-—-1_3.“)2:.1 .

80 that the sunration has the form

oo

Z ngm(g. n) (/T3

ms=0

This is just equal to the cven part of H(u) (sece Fquations 69,
89, and 94) cvaluated at u -.:\/:_5?\‘ « This value of u
correspondc to 2 = -@+ 20T or to o= « (3 +W+ 2nWN

. (scc Equation 92)., The even part of H(u) can be therefore

evaluated as follows:

s W 3 ([ - omn))
Rej(u = [~ 3a) = (cos O (u) &(gg (- B+ 2T |
2 cos v B

rp—

son ;"@ 8.1

s 5= o +
| sin W(u) ;n(b o
W= T - (6 + 2allN

*' (costo(u) 4 cosn (-B+ onii)

2 cou “2-:3-—)-
con chul 0T | |
o) 4 (3 Lar (137)
sin - =LA
2n

W=T- (3{- 21N




“B%(u = +./-3a) = =2n cin W(u)
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The second tern of this equation vanishes, Application
of L'Hospital's rule to the first term yields
| .

W= - P# 21

e -2n cos[g - n’m}] (138)
Therefore,
B, (B, n)(-3a)" ==2n cos | © - il (139)
on P, n)(-ja)” =-2n cos| 5 - nli: _ 39
m=0

When this ard Equation 73 are substituted into Zquation 136
the first ternm in the expression for I+_“_():r,(3, n)

takes the forn

- o
-2 cos ( -g - n'ﬁi.‘) jkr cos (P - 2rR) + J-“I’:I_" & 2
S e e ¥ dt =
| -RJF %’ (140)
(kra)

Jkr cos (B~ M) + j?{

e - sgn (rs (P- 2y ) € i .

o0

-
. e~ a4
1
b4

(kra)

i e
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The factor sgn (r: (@~ 2n)) arises here because

.cos ( -@ - n’ﬂ?:)

d .

a Sty

The ninus sign apolies if ‘@-Zhﬂn4>ﬂ} othervise the
blus sign ayplies.

The sccond term in Fquation 136, that is, the double
sunnation, can be rearranged and.writton as a seriés ef

cocfficients multiplying terms of the form

=M
(kr)2 .
That is,
= n
b3 ( y Izm - % % %)(—jn)k -1
B. (B, n ]
2m G g %)
3 (kr)
mas= 1. a1
P o3
[1(%) : ..'m-'l [1(.14"]5‘).
i L Bom(@r n)(-ja)
L(}:r)2 4 =\1 | xsF
o .

z B;m(P' n)(-ja)m -2 4 C0vecc

nm=2
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[‘ (o=
1
M+ )
+ < B:m((J' n)(_ja)m -N- 2'.., AR
M + 5 ;
(kr? m=M4+1l
o0
RP + 'é')
= <y sp(e, n) . 2 (141)
2 I
» =0 (xr)

The typical coefficient SP(Q. n) can be expressed as a
finite sum by making use of the series form of the even

part of K(u) as shown here.
oo

- 2 t *
$p@, n) = (-ja) pes 2 Bo(fs m)(=3)" =
m=>r 4+ 1
E (-ja);'(l) + 1) ["e(u =f-—j—c'?) -

P

- z Bgm(e, n)(-—ja)m] 3 (142)

n=0

The final sum in this expression can be ginplified using
Equations 87, 88, 102, and 104, Substituling these

equations into the sum yields,
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P

¥ " o oact £ 2,0 2% 5.4
ji: Bon@s m)(=3a)™ = caC e (aC 4 §a"Cr) + (-§a"Cy, + a”CpL) +
m=0 '

3 &

L & '
+ (-a)Cl* & ja ‘06) & Qi ¥ ("'j)P.

£S5

o >
.,np + lc - (“'j)} ap + lcap . (11'3)

*2p
since all but the lact term cancel., Substituticn cf this
result and the expression for the even part of H(u) into
Equation 142 produces

i

‘SP(Y)’ n) = (-;ja)"(p ¢ (-2n oo8 (;— nilii)) + iCsp

(P, n)(1hh)

This equation can now be inserted into Equation 14l and
that along with 140 and 136, These substitutions yield

jkr cos (P-— onti) + j‘g‘
T (k ) ST (Trs (p- 2nn)) & = ;
. r,@yn sgn £ (p n fr=

(o)

w
> ~j(kr + )
a_‘ﬂ'? dT - ¢ o,

1
(kra)?

oo
1 g P "
i ]_—(.]‘-‘ + 5) C‘?},(.P, n) cos(é@-— nilii)
po 2l &'n v/}fal’ + 1
(kr) : :

P20 o (1hy)

S opprom = AN SRR e e T v sy g%y WY ems LI g weggy ceatimg st up ey v
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This-is just Oberhettinger's series as given in ¥qguation 135,
but here written for arbitrary wedge angle. Thus, the
Obcrhcttinger’serics is simply the g;ncralizcd Pauli

sexries written in a different fornm.

Surmiary of Eouations

In this chapler, five series expressions for GP have
been precented., The first of these was the eigenfunction
serics, and the other four were asymptotic serics. These

five expressions are sunmarized below, and their range of

application is discussed,

‘Bigenfunction Series

oo
Gp = ;1;- EmJﬂ(kr)c . & [cos f‘; (P-g') 1 cos *
ne=0 » .
2—(¢+¢~>] . | (146)

A}

?his cquation is perfectly gencral and can be employed to

compulc G, for arbitrary wedge angles (X), angles of

P

incidence (@'), ard observation coordirates (r, ¢%).

The four asymptotic expressions for GP all have the

following basic forn:

Gp - cjkr p—- (ff’-;") v(r- I""f"l) +

i S . . comuilints




8o
+ (plane wave terns corresponding to reflected ficld

componcnis)

+ Iﬂr():r. n, (gh-¢')) « I_,n,(!:r, n, (¢p-¢*)) 1

s+ Iﬂr(kr‘ n, ($+PH5)) » I_,n.():r. n, (+p1)) (147)

The first term in this expression describes the incident
flanc wave ficld., The seccond tern contains the plane wave
ficlds arising from the reflection of the incident ficld
by the faces of the wedge. These fields are descrildcd by

terms of the form

o Jkr cos (&mri - (¢ s 5’3'))A BT - |2am - (g 20)])

Tlhie value of N and the range of existence of these
higher erder couponents are most casily determined fron
the z-plane pole diagrams. The unit step funclions
appcaring in this equaticn describe the locations

of the planc wave ficld boundarics. ©n the field
boundarice, the unit ctep has the value cne-half,

The four final terms in Equation 147 deseribe the
difiracted coméoncnt of the total fiecld, 5nd it is these
teriis which are exprecsed as asyusptotic cericec. Each ficld
boundary has esgocicvted with it on; of theue four terms,

The four asymptotic foris for these terms are listed below,
J 4

g . T D I r e A e SR G et
=
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Uncorrccted Asymptotic Series

=§(kr + 'If_:')

: e
B Itékr‘ (S‘i ‘5')' n)'\o - 2J2ﬂn,". .
Lo
4 [?"‘ & %) ‘
cam((sﬁasi-). n) sy . (148)
(kr) .
m=0
c: = cot Jg%"..) ' | (149)
2 {1 2,821
02 = jJC {I,' + =3 csc ('-2;“- \ (150)
en
% 1 .2 | by BT
c“z-l‘-co{g-+;1;cs (2n )4-
s 4[-5-2-- -—lt]csca((;iq)\ " (151)
6n 3n . |

This expression can be used to conpute the four finz2l terns
in Equation l’i?.so lon: as the values of @&, &', and n are
such that no poles lic near the csaddle points associzted
with the evaluation of these terms, Jf the values of

9& ;". and n are such that a pole lices near the saddle




&2

associated with a particuler I*'ﬂ" Equation 148 is not

valiad,

When kr is increcased, the effecctive distance tetlween

‘the poles and saddle points is increased. Therefore, for

given values of @, ¢*' and n, the validity of.}.‘.quatj.on 148
increases with increasing kr. Staled in phycical terns,
Equation 148 can be used to compute the diffracted components
of CP at field peints at which the product of the angular

distince frou ficld boundariecs and the radian distance from

the "ertex of the wedge is large.

Generalired Paull Asynptotic Serices

o0

—j(kr‘ + 'g:) \'

52(2.‘ n rlT L_‘

. |
Itﬂ—(kr' (s 951). wise « 3 nam[((,ﬁ.t ¢, n] ;

m=20
» 2
EI -k + :21-)(--;5:1)k -8 2
1 + (~ja)” Io(]:r) (152)
r (n - & « '2-)
X =2 (kr) | ]
s % , =
Bb((f"-’-‘?’“)’ n) = -:;Co((;ég_fﬂ | 1}) (153)




+
B, (B ')y n) = iy _ 1y ((Bagt), n) -ack .

((F:g"), n) T (ash)
a =14+ cos (2niM - (;5¢¢')) ; (15%)
oo
2/ jura -it2 ., :
Io(kr) = e e dat . (156)
3
(kra)2

‘N denotes the z-plane pole nearest the saddle point used in

the cvaluation of I Equation 152 can be used to evaluate

s
the|last foﬁr terms in Equation 147 for arbitrary values of
¢, ¢' and« y and, in particular, for values of ¢ncar the
boundarics of the planc wave fields. The value of N to be
uééd in each ternm is most easily deterimined from a pole

diagran, The accuracy of ‘hic expression inereases with

increasing kr.




&h

Pauli Asymplolic Sceries ;

I“.n_(kr‘ @ n) o+ Iﬂr(l.r‘ B, n)a o el g

\
- K - 3 [}m -k 4 %)
Aan(e' n )J J (-j;) ) ' -—-—---.-—--.---.......j.. -

me-)+ 3
(o) o

m=20 Lk =1

- (=50 1_(kr) (157)

: B;m(p. n) + B;m(Q. n) :
Aam(F, n) = ———— 5 - :

-

The expressions for B:m(e, n) arc given by Equstions 153
and 154, and Io(kr) is given by 156,

"~ Equation 157 mey be used to compute the finald terss
of Equation )h7 in cases in which a pole lics near cither
the gaddle point at z =T or at z = -~ but not near botlh,

This equation is & eum of two serices of Lhe form given

by Equation 152 for cqual values qf(3:uu111= 0.
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Gencralized Oberrettinger Seriecs

l’z‘w(kr. e. n)ar - sgn (M2 @- n¥1). o

(- 4]

Skr cos (- antil) o j{
. -

o§C i
i ¢ aT

:

(xra)

<O
.-j(kr + ‘{) [(P B %) Cgp(c. n).
P e % ZJ?nr

(kr)
P=0

3? cos (g - nlx) ;
1-[2‘\.}’ + 1 (255)

a =l ¢ cos (e- 2ntth)

The cquation can be used to cvaluate the last four terss
in Equation 147 for arbitrary valuec of ¥, ' and®,
The uccuracy incrcoses with incrcacing kr. This serics

is cinply a rcarrargerent of the generualized Paunli serics.
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RUNERICAL LXANPLES

Sone typical nunerical examples are presentied here
to illustrate the tyre of results which ave obiainadble
with the equations developcd in the previous chaptler,

Some conclusiorns regarding the relative nmerit of the ordinury

L 7Y
.

Pauli sieries, the generalized Pauli scerices, and the

Oberhetiinger series are sumuarinsed at the end of this
chapter.
In each example, the wedge angle, the angle of incidence

of the plane wave field, the angle of observation, and the

boundary conditions were fixcd; and tlie total ficld wvas
calculated as a funciion of kr. In all the exanrples, the
. calculatiione were made on or near a field boundory for
# - relatively small values of kri in most caccs, 0 £ kr £ 19,
It is ncar the field boundaries and for small values of kr

that the greatest deviation between the results given by

the asymdtotic series and the cigenfunction seriec i

expected, In the cxanmples, the amplitude and phace of

* GP were calculated by nmeans of the cigenfunetion series,

86
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and these values were taken to be thc.rcference or true
ones, These calculaticns were performed on the
OSV - IBM - ?Oéh digital computer. I; the cxamples
involving wedges with o greater than 180 degrces, the
fields were also calculated by means of the ordinary
Pauli series, the generalized Pauli ceries, and the
Oberhettinger series. In the examples involving wedges
witﬁ‘x less than 180 degrees, the fieclds were calculated
using the generalized Pauli series and the generalized
Oberhettinger series. The results of these computations
‘are compared with those given by the eigenfunction scrieg.

In all cascs, the values of G, have been divided dy 2 in

P
order to bring them into correspondence with the values
published by wait.121

. Bach exanmple is preceded by a description of the
~assurcd geometry and brief summary of the results. The
wcdce‘anglc and the angles of incidence and observation are
denoted on the graphs as are the boundary conditions. The
Neumann boundory condition is denoted by the acoustically
equivalent tcrm."hard," while ine Dirichlet condition is
dcoeribed by "soft." The particular agsymplotic series

.used in ecach calculation is also dcnoted on the graphs.

-
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The cigenfunction results are reprecenticd dby a heavy dashed
lines The asynplotic series resulils are denoted by solid
or dashed lines or by circles. The resvlic obtained using
the leading term as well ag higher order terns of the asynmp-
totic serics are illustirated on the graphs. fhc results
given by the first term of a series arce denoted by (1);
those obtained with the first and cecond by (2); by the
first, second, and third by (3); clc.

The results obtained for GP from the "first tern™ of

&ny of the asywvtotic sceries include all the planc wave
contridbutions pilus the sua of two or four Fresncel inlegral
terins which deseribe the leading ternm of the partiewlar
asynptotic series. The ordinary Pauli series rcﬁuirou two
such integrale, while thc.other series require four, The
rcoulis obtained from the "firct and sccond teruns" include
the contributions listed above plus the sua of Lwo or four
tcrms:given by the second term in the appropriate scries.
The uncorrccted asymptotic serics, Equation 148, was not

used in thece calculetions,

Examnle 1

- In thic example a plane wave is assunied to be incident

; . 3 20
on a hard wedge having an exterior angle o = 3307, The
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assumed angle of incidence ic @' = 0°, ‘The ficld is

calculated along the shadow bLoundary at ¢ = 180°, The
firsé term of the generalized Pauli series and the first
two terms of the ordinary Pauli series describe this field
accurately for values of kr as snmall as 1,0. Four terms

are reguired in the Oberhettinger series to produce good

agrecnent with the eigenfunction series for 5 < kr £ 15.

Below kr = 5 even four terms do not produce good agreement.
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Examnle 2

A plane wave field is assumed Lo be proprnuting along
t 401 o  on . F oS b = K O $ ¥y o pe ar o |
he ' = 07 face of a 270 degrece, hard wedge in this exanple.
The shadow boundary field is czleculated. The leading tern !
of the generalited Faulil series produces good agreement
with the eigenfunction series over the ronge of kr examined.
The ordinary Pouli series and the Cherhettinger series

require scveral terms to produce good agreenment cven at

large volues of kr,

-0 v ST e
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Example 3 . ‘

in this example the exterior wedge angle is asgumed to
be 190 degrec-; the angle of incidence O degreesy and the
field is calculated on the shadow boundary at 180 degrees.,
The Pauli series fails to yield an accurate value of GP
on the shadow boundary regardless of the nuvmber of terms
uwsed, Two terms are rcquired in the generalized Pauli ceries
and the Oberhettinger series to produce good agreecment
with the values gchn by the eigenfunction series for
kr € 5. Vhen kr is greater thaﬁ 5 only one term is required

in the gencralized Fauli series, but two are reguired in

the Oberhettinger series up to kr = 15,
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Bxample i

The cexterior wedge angle in this example is assuned to

Je

be 100 degrecs. ne angle of imc!

r

dence is 10 degrccs.. The
ficld is caleulated at 155 degrees, midway between one of
the faces of the wedge and a reflection boundary. This is
the first exaaple invelving a wedge of angic lcss tﬂun
180 degrees. The field is caleulated using the cigenfunction
Gcrics; generalized Pauli series, and the generalized
Oberhettinger seriess Both hard and soft wedges arve
exammined, The generalised Pauli and the generalized
Cverhetlinger series are equally uceful in this case, The
gcnefal'ucd Pauli is slightly bthcr since it deseribes
the amplitude of the field mere accurately at small values
of kr than the Cberhetltinger serices does, Trhe phase of
GP is not shown in this or the following exambles.

It can be shown that if « = ﬁ y Where M is an integer,
the diffraction components of GP vanish and the total field
13 described completely in ternms of plane wave conponcents.
This correccponds to th2 fact that for thcsé particplar

wedge angles Lthe problem can be analyzed in terms of ordinary

image thecory.
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Exanple S

The assunmed wedge angle is 100 degrees in this exannle;
the angle of incidence is 20 degrees; and the ficld is
calculated along the reflection boundazry at 95= 30°. The
firct term of the generaliszed Pauli series accurately describes
the ficld for kr as small as 1 in the cese of the hard wedge,
In the case of the soft wedge, two terms c¢f thisc series are
required to produce good agrcement with Lhe eigenfunction
serics at onmall values of kr., Two terme are rcquired in
the Oberhetiingzer serics to desceribe the field of the hard

wedge. In the case of the soft wedpe,one ters suffices

-except at snall vaeluecs of kr,
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Exanple §

The exterior wedge angleeld is assumed to be 70 degrees;
and the angle of inecidence 10 degrees., In this exauple, the
ficld was calculated at ¢ = 60°, nidway between one face of
the wedge and the refleclion boundary at ¢ = 500. In the
case of the hard wedpge, two terms arce reguired in the jene-
eralized Pauli series to procduce good aprecuent with the
eigenfunction series for kXr £ 2.5, In the case of the soft
wedpe, only one tera is reovired. Thne first tern of the
Oborhcttincbr series deceribes the field of the soft wedge

quite wel)., This serics does rot yjeld particularly good

recnlis in Lhe case of the hard wvedge,

. Prn——— — e T ey T L s el P
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Exannle 7.

In this final qxample, the exterior wedge angle is
agssumed to be 40 dccrccs{ the nnglo‘ot incidence 20 degreeasy
and the ancle of observaticn 10 degrees. In the cage of the
hard wedge, the valucs for GP obtained with the first tera
of the generalized Pauli and Cherhettinger ceries are in
excellent agreerment with those given by the eigenfunction
series. In this case, the diffracted cormponent of the ficld
is very srall, and a simple supcerposition of the plane wave
terms of Equation 153 is sufficient to describe the field,
In the case of the coft wedge, the first term of the gen-
eralized Fuuli series describes the field accurately for
valuces of kr greater than 3.5. For cnaller values of r
this serics fails, The genceralized Oberhettinger series
docs not describe the field odcquately for the soft wedge
caue over the range tested. This example fllustrates that
both the gencralized Pauli and the generalized Oberhettinger
serics fuil‘for g0l values of, but that the gencralized

Pauli geries fails more gracefully than doce the generalized

Oberkettiinger.
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Conclusions

The important rcoults of this work can bLie sunmarized

as followo:

a) The integral expression for the total field produced
by the diffraction of a planc wave by a t:.-dinensional
wedge can be cxpanded asynmptoticully by o varicty of
techniques, dbut the resulting expansions can be shown
to be intimately rclated. In particular, the gencralisued
Pavli gerics ;nd the generalized Oberhettinger series
are sinply different arrangenents of the same serics,
and the ordinary Pauli ceriesc represents ¢ speciul fornm
of the generalized Pauli cerics.,

®) Of the asymptotic seriecs exumined in this work, the
generalized Pauli ;erios is the most satlisfactory for
computling the field necar trancition regions. The first
tern in this series provides an accurate description
of the anplitude and phasc of the ficld over a wide
range of values of & and kr. It is particular.y
superior to the Oberhettinger series in caces involving
wedges ha;ing angles quite differeat from 180 degrees.

¢) The ordinary Pauli geries is superior to the Oberhettinger

gorics for calculating the ficlds diffracted dy wedges




131
having large exterior angles, while the Oberhettinger
verdes is superior to the ordinary Pauli ceries for
casecs Involving wedges with exterior angles in the

nedghborhood of and Jeso than 180 degrees.




CHAPTER V

DIFFRACTION COEFFICIENTS

In this chapter the lecading terms of the asymptotic expansions

given in the summary of equations, pp. 79-85, are used to determine

the diffraction coefficient for the wedge.

- hard diffracted components, respectively, of G

B, = F . (20 4,¢) -9 (4,00

In terms of the geometrical

jkr

fr

where 'P.:i is the electric field incident on the edge,

2 is a unit vector parallel tc the edge,

conditions, respectively,

¢,4' and r are defined in Figure 2.

P

theory of diffraction the diffracted electric field for plane and

cylindrical waves normally incident on the wedge is given by

Ds’Dh are the scalar diffraction coefficients for the

Dirichlet (soft) and Neumann (hard) boundary

(159)

In the discussion to follow E: and 1-23 correspond to the soft and

in Fquation 147, pro-

vided that E: and E:" respectively, equal one., At this point it is

convenient to introduce the definitions

3K
| D' (G+¢') = & sin M/n ; :
' - a J2mk g ot ¢

cos = - cos —

z -
d"($+¢') =

————— cot(
ZnJ 21k 2n

132

ﬂ¢(¢t¢0)

e W i b st

(160)

(161)
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where the superscript + is directly associated with the first +

sign in the argument of the cotangent,

+
Flkr a~ (¢+¢"))
o0
/ z jkr F(M-ﬁ') -1[2
= 2jJkra (g+@') o © =T e ©° dC (162)
T
Era'(s‘-to')
in which
t .
a (@+0') =1+ cos(2mN - (#+¢')), (163)
-9
where N is the integer which most necarly satisfies the equation
+
= (@+@') + 2MmN = +7r. (164)

The superscript + is directly associated with the + sign preceding the
. The positive branches of the square roots are taken in Equations

160 through 162,
+
The magnitude and phase of F(kra ) are plotted in Figure 4§,
+ +
where it is seen that as kra increcases, IFl 1, For kra > 10,

F 21,

From the preceding discussion and the leading term in the Generalized

Pauli asymptotic series, Equation 153, the sc:¢: iiffraction coefficients
D (¢,9') =
f
+ ' + U i " = Al
: {a* #-9)FIkrat (¢- ) 14a™ B-¢') FIKra™ (¢-0") )

r TR (S T DI d‘<¢+¢')r-[km“«‘»+¢'>1} (165)
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in which the upper sign between the two bracketed terms is associated
with the soft (s) boundary condition and the lower sign, with the hard (h)

boundary condition. At points well removed from the transition regions

' adjacent to incident and reflected field shadow boundaries referred to
| .9
as field boundaries earlier, where kra > 10, the correction factors

F may be replaced by unity, and Equation 165 simplifies to
Dﬁ(¢.4") = D' (§-¢) ;D' ($+¢), (166) |

which is the well-known form of the wedge diffraction coefficient given
by l(eller.3 |

Next, using the leading term in the Pauli asymptotic series,

Equation 157, the scalar diffraction coefficient |

’ ') =
Dﬁ(é ¢ ”

D'(¢-4') Flkra(§-¢')] ¥ D' (¢+¢') Flkra@+d')); (167)
+
| in the Pauli solution N is zero so that

+
a @+¢') = a(¢+d') = 1 + cos(@+¢"). (168)

Outside of the transition regions, where kra 2> 10, the correction

factors may be replaced by unity and Equation 167 simplifies to

Equation 166. |
Finally using the leading term in the generalized Oberhettinger

series, Equation 158, the scalar diffraction coefficients
D_(8,$') =
R v
4 %
[d+(¢-¢>') + sgn (- 1(¢-¢")-2nN ) e {1—F[ka+(¢-¢')]} -
2]7Tka+(¢-¢')

e G R e 9 S N DD g S s gy ooty DRSO i 2 W G s * S ibieg 78 1y Sming cgeh > _J
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i

[} \" 4
b a e + OO By gyl
2J-n ka @®-9¢')

il
+ . sgn (M- (f'*-!-ff’)-ZnN"'ﬁf)n j4 +
Sld* g + 28D f-rixa* @4}
2| 7 ka® (+4)
A
(= (1) -2m e *
- s sen (7= [((+d*)-200 T])e -,
+ d (9"+‘f) + = {1-1-‘[1::1 (¢+(i")]}J , (1()9)
2 J nka (§+§')
: :
where N is determined from Fquation 164 and a (4+¢') fron Lquation 163.
+

Outside of the transition regions, where kra » 10, the correction
factors again may be replaced by unity and it is seen that Equation 169
simplifies to LCquation 166,

Three expressions have been given for the scalar diffraction coeffi-
cients, Equations 165, 167, and 169. Unlike the earlier expression given
by Re]lcr3 these are not restricted to the region outside the transition
regions. It is natural to ask which is the most useful in the transition
regions, in terms of its accuracy and simplicity. It is evident that
Equation 169 is the most complicated representation of the diffraction
cocfficient, whercas Equation 167 is the most simple. On the other
hand, a study of the examples in Chapter 1V reveals that the most
accurate results (assuming only the leading term is retained in each
asymptotic series) are obtained with the Generalized Pauli series,

A computer subroutine has been written for the diffraction coefficient
described by Equation 165, and it has been used in a number of wedge

122,123,124,125

diffraction problems with good accuracy, provided

e
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r > 0.2 wavelength., It is definitely more accurate than the expression
for the diffraction coefficient given in Equation 167. However, a
computer subroutine is not essential to the use of the diffraction
coefficients based on the Generalized Pauli series, since the cor-
rections in the transition regions can be easily made using Figure 48,
The dyadic diffraction coefficient
D.4") = 22 D_(p,6") - §'¢ D, 6,7
in Equation 159 can be applied to three-dimensional problems provided
that the incident field at the point of diffraction is normal to the
edge. Furthermore, it is applicable to cases where either the source
point or the field point is close to the edge. This will be described

126 where the Generalized Pauli solution has been

in a later report
extended to obtain a dyadic diffraction coefficient for waves obliquely
incident on a perfectly-conducting wedge. This dyadic diffraction coeffi-

cient can be used in the transition regions for plane, cylindrical or

spherical wave illumination of the edge.

1.0 50
45
08 40
s ;
8 06 IS mg
E : w
= Fikra) = 2j/kro !llufl'"d'r _'352
g 04— Vo Ty
5
02— :]ID -
—15
wl o ol .
%Dﬂl 0.01 0.1 1.0 10.0

Fig. 48. The magnitude and phase of the corrcstion factor.
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